What Is Lactoferrin?

What do we know about Lactoferrin?

You are reading an adapted and abridged version of an article which first appeared at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198036

One of the primary ingredients in PRAVENAC help: clear skin®, Lactoferrin is an iron-binding protein present in large quantities in colostrum and in breast milk, in external secretions (including sweat, tears and saliva) and in polymorphonuclear leukocytes (a type of white blood cell which releases enzymes during infections).

Lactoferrin’s main function in the body is in protection against contagion where natural immunity does not already exist. A number of protective qualities have been observed in research, including:

i) antimicrobial activity, where Lactoferrin is believed to have a role in reducing the proliferation of bacteria through iron deprivation and specific interaction with bacterial cell walls. This action is the main reason Lactoferrin is included in PRAVENAC help: clear skin®.

ii) antiviral activity, where Lactoferrin has been observed to be effective against certain enveloped and naked viruses including the common cold, influenza and viral gastroenteritis.

iii) antiparasitic activity, believed to involve interference with iron acquisition in some parasites, and inhibiting the growth of certain parasites through binding with plasmodial proteins.

iv) immunomodulatory activity, involved in the development of the immune system in the newborn and through specific anti-inflammatory effects – including downregulation of pro-inflammatory cytokines in white blood cells.

Lactoferrin is a glycoprotein belonging to the transferrin protein family. Isolated from bovine milk (dairy milk), the Lactoferrin used in PRAVENAC help: clear skin® is of the highest commercially available quality.

Primarily found in mucosal secretions (tears, sweat, nasal and bronchial secretions), Lactoferrin is the second most abundant protein in the body. Its antioxidant, anticancer anti-inflammatory and antimicrobial activities are the most commonly studied functions.

Over the past decade, Lactoferrin has been reported to affect various immunological functions playing an important role in host defence against infection and excessive inflammation, appearing as a key element in the mammalian immune system.

Further reading can be found through the links below:

1. Sorensen M., Sorensen S.P.L. The proteins in whey. Comptes-rendus des Trav. du Lab. Carlsberg. 1939;23:55–99. [Google Scholar]

2. Groves M.L. The isolation of a red protein from milk. J. Am. Chem. Soc. 1960;82:3345–3350. doi: 10.1021/ja01498a029. [CrossRef] [Google Scholar]

3. González-Chávez S.A., Arévalo-Gallegos S., Rascón-Cruz Q. Lactoferrin: Structure, function and applications. Int. J. Antimicrob. Agents. 2009;33:301.e1–301.e8. doi: 10.1016/j.ijantimicag.2008.07.020.[PubMed] [CrossRef] [Google Scholar]

4. Sánchez L., Calvo M., Brock J.H. Biological role of lactoferrin. Arch. Dis. Child. 1992;67:657–661. doi: 10.1136/adc.67.5.657. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Brock J. Lactoferrin: A multifunctional immunoregulatory protein? Immunol. Today. 1995;16:417–419. doi: 10.1016/0167-5699(95)80016-6. [PubMed] [CrossRef] [Google Scholar]

6. Lönnerdal B., Iyer S. Lactoferrin: Molecular structure and biological function. Annu. Rev. Nutr. 1995;15:93–110. doi: 10.1146/annurev.nu.15.070195.000521. [PubMed] [CrossRef] [Google Scholar]

7. Vorland L.H. Lactoferrin: A multifunctional glycoprotein. APMIS. 1999;107:971–981. doi: 10.1111/j.1699-0463.1999.tb01499.x. [PubMed] [CrossRef] [Google Scholar]

8. Brock J.H. The physiology of lactoferrin. Biochem. Cell Biol. 2002;80:1–6. doi: 10.1139/o01-212.[PubMed] [CrossRef] [Google Scholar]

9. Valenti P., Antonini G. Lactoferrin: An important host defence against microbial and viral attack. Cell Mol. Life Sci. 2005;62:2576–2587. doi: 10.1007/s00018-005-5372-0. [PubMed] [CrossRef] [Google Scholar]

10. Baker E.N., Baker H.M. A structural framework for understanding the multifunctional character of lactoferrin. Biochimie. 2009;91:3–10. doi: 10.1016/j.biochi.2008.05.006. [PubMed] [CrossRef] [Google Scholar]

11. Leboffe L., Giansanti F., Antonini G. Antifungal and antiparasitic activities of lactoferrin. Anti-Infect. Agents Med. Chem. 2009;8:114–127. doi: 10.2174/187152109787846105. [CrossRef] [Google Scholar]

12. Zhang Y., Lima C.F., Rodrigues L.R. Anticancer effects of lactoferrin: Underlying mechanisms and future trends in cancer therapy. Nutr. Rev. 2014;72:763–773. doi: 10.1111/nure.12155. [PubMed] [CrossRef] [Google Scholar]

13. Giansanti F., Leboffe L., Angelucci F., Antonini G. The nutraceutical properties of ovotransferrin and its potential utilization as a functional food. Nutrients. 2015;7:9105–9115. doi: 10.3390/nu7115453.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Giansanti F., Leboffe L., Pitari G., Ippoliti R., Antonini G. Physiolgical roles of ovotransferrin. Biochim. Biophys. Acta Gen. Subj. 2012;1820:218–225. doi: 10.1016/j.bbagen.2011.08.004. [PubMed] [CrossRef] [Google Scholar]

15. Connely O.M. Antiinflammatory activities of lactoferrin. J. Am. Coll. Nutr. 2001;20:389S–395S. doi: 10.1080/07315724.2001.10719173. [PubMed] [CrossRef] [Google Scholar]

16. Rodriguez D.A., Vazquez L., Ramos G. Antimicrobial mechanisms and potential clinical application of lactoferrin. Rev. Latino. Microbiol. 2005;47:102–111. [PubMed] [Google Scholar]

17. Van der Strate B.W., Beljaars L., Molema G., Harmsen M.C., Meijer D.K. Antiviral activities of lactoferrin. Antivir. Res. 2001;52:225–239. doi: 10.1016/S0166-3542(01)00195-4. [PubMed] [CrossRef] [Google Scholar]

18. Öztas Y.E.R., Özgünes N. Lactoferrin: A multifunctional protein. Adv. Mol. Med. 2005;1:149–154.[Google Scholar]

19. Bennett R.M., Kokocinski T. Lactoferrin content of peripheral blood cells. Br. J. Haematol. 2005;39:509–521. doi: 10.1111/j.1365-2141.1978.tb03620.x. [PubMed] [CrossRef] [Google Scholar]

20. Anderson B.F., Baker H.M., Dodson E.J., Norris G.E., Rumball S.V., Waters J.M., Baker E.N. Structure of human lactoferrin at 3.2-Å resolution. Proc. Natl. Acad. Sci. USA. 1987;84:1769–1773. doi: 10.1073/pnas.84.7.1769. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Anderson B.F., Baker H.M., Norris G.E., Rice D.W., Baker E.N. Structure of human lactoferrin: Crystallographic structure analysis and refinement at 2.8 Å resolution. J. Mol. Biol. 1989;209:711–734. doi: 10.1016/0022-2836(89)90602-5. [PubMed] [CrossRef] [Google Scholar]

22. Baker E.N. Structure and reactivity of transferrins. Adv. Inorg. Chem. 1994;41:389–463.[Google Scholar]

23. Moore S.A., Anderson B.F., Groom C.R., Haridas M., Baker E.N. Threedimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J. Mol. Biol. 1997;274:222–236. doi: 10.1006/jmbi.1997.1386. [PubMed] [CrossRef] [Google Scholar]

24. Eswar N., Webb B., Marti-Renom M.A., Madhusudhan M.S., Eramian D., Shen M.Y., Pieper U., Sali A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2006;8:5–6.[Google Scholar]

25. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. [PubMed] [CrossRef] [Google Scholar]

26. Rastogi N., Singh A., Singh P.K., Tyagi T.K., Pandey S., Shin K., Kaur P., Sharma S., Singh T.P. Structure of iron saturated C-lobe of bovine lactoferrin at pH 6.8 indicates a weakening of iron coordination. Proteins: Struct. Funct. Bioinform. 2016;84:591–599. doi: 10.1002/prot.25004. [PubMed] [CrossRef] [Google Scholar]

27. Aisen P., Harris D.C. Physical biochemistry of the transferrins. In: Loehr T., editor. Iron Carriers and Iron Proteins. VCH; New York, NY, USA: 1989. pp. 241–351. [Google Scholar]

28. Baker E.N., Anderson B.F., Baker H.M., Day C.L., Haridas M., Norris G.E., Rumball S.V., Smith C.A., Thomas D.H. Three-dimensional structure of lactoferrin in various functional states. Adv. Exp. Med. Biol. 1994;357:1–12. [PubMed] [Google Scholar]

29. Baker E.N., Baker H.M. Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol. Life Sci. 2005;62:2531–2539. doi: 10.1007/s00018-005-5368-9. [PubMed] [CrossRef] [Google Scholar]

30. Baker H.M., Baker E.N. A structural perspective on lactoferrin function. Biochem. Cell Biol. 2012;90:320–328. doi: 10.1139/o11-071. [PubMed] [CrossRef] [Google Scholar]

31. Rulis A.M. Agency Response Letter GRAS Notice No. GRN 000077. [(accessed on 21 September 2016)]; Available online: http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm154188.htm.

32. EFSA. Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on bovine lactoferrin. EFSA J. 2012;10:2811. doi: 10.2903/j.efsa.2012.2811. [CrossRef] [Google Scholar]

33. Onishi H. Lactoferrin delivery systems: Approaches for its more effective use. Expert. Opin. Drug Deliv. 2011;8:1469–1479. doi: 10.1517/17425247.2011.615829. [PubMed] [CrossRef] [Google Scholar]

34. Akiyama Y., Oshima K., Kuhara T., Shin K., Abe F., Iwatsuki K., Nadano D., Matsuda T. A lactoferrin-receptor, intelectin 1, affects uptake, sub-cellular localization and release of immunochemically detectable lactoferrin by intestinal epithelial Caco-2 cells. J. Biochem. 2013;154:437–448. doi: 10.1093/jb/mvt073.[PubMed] [CrossRef] [Google Scholar]

35. Bullen J.J. The significance of iron in infection. Rev. Infect. Dis. 1981;3:1127–1138. doi: 10.1093/clinids/3.6.1127. [PubMed] [CrossRef] [Google Scholar]

36. Braun V., Braun M. Active transport of iron and siderophore antibiotics. Curr. Opin. Microbiol. 2002;5:194–201. doi: 10.1016/S1369-5274(02)00298-9. [PubMed] [CrossRef] [Google Scholar]

37. Bullen J.J. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Proc. R. Soc. Med. 1972;65:1086. doi: 10.1136/bmj.1.5792.69. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Weinberg E.D. Human lactoferrin: A novel therapeutic with broad spectrumpotential. J. Pharm. Pharmacol. 2001;53:1303–1310. doi: 10.1211/0022357011777792. [PubMed] [CrossRef] [Google Scholar]

39. Tomita M., Wakabayashi H., Yamauchi K., Teraguchi S., Hayasawa H. Bovine lactoferrin and lactoferricin derived from milk: Production and applications. Biochem. Cell Biol. 2002;80:109–112. doi: 10.1139/o01-230. [PubMed] [CrossRef] [Google Scholar]

40. Teraguchi S., Wakabayashi H., Kuwata H., Yamauchi K., Tamura Y. Protection against infections by oral lactoferrin: Evaluation in animal models. Biometals. 2004;17:231–234. doi: 10.1023/B:BIOM.0000027697.83706.32. [PubMed] [CrossRef] [Google Scholar]

41. Di Mario F., Aragona G., Dal Bò N., Cavestro G.M., Cavallaro L., Iori V., Comparato G., Leandro G., Pilotto A., Franzè A. Use of bovine lactoferrin for helicobacter pylori eradication. Dig. Liver Dis. 2003;35:706–710. doi: 10.1016/S1590-8658(03)00409-2. [PubMed] [CrossRef] [Google Scholar]

42. Yekta M.A., Cox E., Goddeeris B.M., Vanrompay D. Reduction of Escherichia coli O157: H7 excretion in sheep by oral lactoferrin administration. Vet. Microbiol. 2011;150:373–378. doi: 10.1016/j.vetmic.2011.02.052. [PubMed] [CrossRef] [Google Scholar]

43. Welsh K.J., Hwang S.A., Boyd S., Kruzel M.L., Hunter R.L., Actor J.K. Influence of oral lactoferrin on Mycobacterium tuberculosis induced immunopathology. Tuberculosis. 2011;91:S105–S113. doi: 10.1016/j.tube.2011.10.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Velliyagounder K., Alsaedi W., Alabdulmohsen W., Markowitz K., Fine D.H. Oral lactoferrin protects against experimental candidiasis in mice. J. Appl. Microbiol. 2015;118:212–221. doi: 10.1111/jam.12666.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Sherman M.P., Bennett S.H., Hwang F.F., Yu C. Neonatal small bowel epithelia: Enhancing anti-bacterial defense with lactoferrin and Lactobacillus GG. Biometals. 2004;17:285–289. doi: 10.1023/B:BIOM.0000027706.51112.62. [PubMed] [CrossRef] [Google Scholar]

46. Hu W., Zhao J., Wang J., Yu T., Wang J., Li N. Transgenic milk containing recombinant human lactoferrin modulates the intestinal flora in piglets. Biochem. Cell Biol. 2012;90:485–496. doi: 10.1139/o2012-003. [PubMed] [CrossRef] [Google Scholar]

47. Sachdeva A., Rawat S., Nagpal J. Efficacy of fermented milk and whey proteins in Helicobacter pylori eradication: A review. World J. Gastroenterol. 2014;20:724–737. doi: 10.3748/wjg.v20.i3.724.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Vongbhavit K., Underwood M.A. Prevention of necrotizing enterocolitis through manipulation of the intestinal microbiota of the premature Infant. Clin. Ther. 2016;38:716–732. doi: 10.1016/j.clinthera.2016.01.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Pammi M., Abrams S.A. Oral lactoferrin for the treatment of sepsis and necrotizing enterocolitis in neonates. Cochrane Database Syst. Rev. 2011;10:CD007138. doi: 10.1002/14651858.CD007138.pub3.[PubMed] [CrossRef] [Google Scholar]

50. Harmsen M.C., Swart P.J., de Béthune M.P., Pawels R., De Clercq E., The T.H., Meijer D.K.F. Antiviral effects of plasma and milk proteins: Lactoferrin shows a potent activity against both human immunodeficiency virus and human cytomegalovirus replication in vitro. J. Infect. Dis. 1995;172:280–388. doi: 10.1093/infdis/172.2.380. [PubMed] [CrossRef] [Google Scholar]

51. Andersen J.H., Osbakk S.A., Vorland L.H., Traavik T., Gutteberg T.J. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antivir. Res. 2001;51:141–149. doi: 10.1016/S0166-3542(01)00146-2. [PubMed] [CrossRef] [Google Scholar]

52. Marchetti M., Longhi C., Conte M.P., Pisani S., Valenti P., Seganti L. Lactoferrin inhibits herpes simplex virus type 1 adsorption to Vero cells. Ativir. Res. 1996;29:221–231. doi: 10.1016/0166-3542(95)00840-3. [PubMed] [CrossRef] [Google Scholar]

53. Marchetti M., Pisani S., Antonini G., Valenti P., Seganti L., Orsi N. Metal complexes of bovine lactoferrin inhibit in vitro replication of herpes simplex virus type 1 and 2. Biometals. 1998;11:89–94. doi: 10.1023/A:1009217709851. [PubMed] [CrossRef] [Google Scholar]

54. Siciliano R., Rega B., Marchetti M., Seganti L., Antonini G., Valenti P. Bovine lactoferrin peptidic fragments involved in inhibition of herpes simplex virus type 1 infection. Biochem. Biophys. Res. Commun. 1999;264:19–23. doi: 10.1006/bbrc.1999.1318. [PubMed] [CrossRef] [Google Scholar]

55. Swart P.J., Kuipers M.E., Smith C., Pawels R., de Béthune M.P., De Clerck E., Meijer D.K.F., Huisman J.G. Antiviral effects of milk proteins: Acylation results in polyanionic compounds with potent activity against human immunodeficiency virus types 1 and 2 in vitro. AIDS Res. Human Retrov. 1996;12:769–775. doi: 10.1089/aid.1996.12.769. [PubMed] [CrossRef] [Google Scholar]

56. Puddu P., Borghi P., Gessani S., Valenti P., Belardelli F., Seganti L. Antiviral effects of bovine lactoferrin saturated with metal ions on early steps of human immunodeficiency virus type 1 infection. Int. J. Biochem. Cell Biol. 1998;30:1055–1062. doi: 10.1016/S1357-2725(98)00066-1. [PubMed] [CrossRef] [Google Scholar]

57. Berkhout B., Floris R., Recio I., Visser S. The antiviral activity of the milk protein lactoferrin against the human immunodeficiency virus type 1. Biometals. 2004;17:291–294. doi: 10.1023/B:BIOM.0000027707.82911.be. [PubMed] [CrossRef] [Google Scholar]

58. Ikeda M., Sugiyama K., Tanaka T., Tanaka K., Sekihara H., Shimotohno K., Kato N. Lactoferrin markedly inhibits hepatitis C virus infection in cultured human hepatocytes. Biochem. Biophys. Res. Commun. 1998;245:549–553. doi: 10.1006/bbrc.1998.8481. [PubMed] [CrossRef] [Google Scholar]

59. Hara K., Ikeda M., Saito S., Matsumoto S., Numata K., Kato N. Lactoferrin inhibits hepatitis B virus infection in cultured human hepatocytes. Hepatol. Res. 2002;24:228–236. doi: 10.1016/S1386-6346(02)00088-8. [PubMed] [CrossRef] [Google Scholar]

60. Tanaka K., Ikeda M., Nozaki A., Kato N., Tsuda H., Saito S., Sekihara H. Lactoferrin inhibits hepatitis C virus viremia in patients with chronic hepatitis C: A pilot study. Jpn. J. Cancer Res. 1999;90:367–371. doi: 10.1111/j.1349-7006.1999.tb00756.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Ueno H., Sato T., Yamamoto S., Tanaka K., Ohkawa S., Takagi H., Yokosuka O., Furuse J., Saito H., Sawaki A., et al. Randomized, double-blind, placebo-controlled trial of bovine lactoferrin in patients with chronic hepatitis C. Cancer Sci. 2006;97:1105–1110. doi: 10.1111/j.1349-7006.2006.00274.x. [PubMed] [CrossRef] [Google Scholar]

62. Pietrantoni A., Dofrelli E., Tinari A., Ammendolia M.G., Puzelli S., Fabiani C., Donatelli I., Superti F. Bovine lactoferrin inhibits influenza A virus induced programmed cell death in vitro. Biometals. 2010;23:465–475. doi: 10.1007/s10534-010-9323-3. [PubMed] [CrossRef] [Google Scholar]

63. Wakabayashi H., Oda H., Yamauchi K., Abe F. Lactoferrin for prevention of common viral infections. J. Infect. Chemother. 2014;20:666–671. doi: 10.1016/j.jiac.2014.08.003. [PubMed] [CrossRef] [Google Scholar]

64. Weinberg G.A. Iron chelators as therapeutic agents against Pneumocystis carinii. Antimicrob. Agents Chemother. 1994;38:997–1003. doi: 10.1128/AAC.38.5.997. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Cirioni O., Giacometti A., Barchiesi F., Scalise G. Inhibition of growth of Pneumocystis carinii by lactoferrins alone and in combination with pyrimethamine, clarithromycin and minocycline. J. Antimicrob. Chemother. 2000;46:577–582. doi: 10.1093/jac/46.4.577. [PubMed] [CrossRef] [Google Scholar]

66. Tachezy J., Kulda J., Bahnikova I., Suchan P., Razga J., Schrevel J. Tritrichomonas foetus: Iron acquisition from lactoferrin and transferrin. Exp. Parasitol. 1996;83:216–228. doi: 10.1006/expr.1996.0068. [PubMed] [CrossRef] [Google Scholar]

67. Shakibaei M., Frevert U. Dual interaction of the malaria circumsporozoite protein with the low density lipoprotein receptor-related protein (LRP) and heparan sulfate proteoglycans. J. Exp. Med. 1996;184:1699–1711. doi: 10.1084/jem.184.5.1699. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Giansanti F., Leboffe L., D’Elia I., Antonini G. An update on the antifungal activities of Lactoferrin: New promising applications in diagnostic, therapeutics and biotechnology. Anti-Infect. Agents. 2013;11:155–158. doi: 10.2174/2211352511311020009. [CrossRef] [Google Scholar]

69. Puddu P., Valenti P., Gessani S. Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie. 2009;91:11–18. doi: 10.1016/j.biochi.2008.05.005. [PubMed] [CrossRef] [Google Scholar]

70. Embleton N.D., Berrington J.E., McGuire W., Stewart C.J., Cummings S.P. Lactoferrin: Antimicrobial activity and therapeutic potential. Semin. Fetal Neonat. Med. 2013;18:143–149. doi: 10.1016/j.siny.2013.02.001. [PubMed] [CrossRef] [Google Scholar]

71. Legrand D., Mazurier J. A critical review of the roles of host lactoferrin in immunity. Biometals. 2010;23:365–376. doi: 10.1007/s10534-010-9297-1. [PubMed] [CrossRef] [Google Scholar]

72. Actor J.K., Hwang S.A., Kruzel M.L. Lactoferrin as a natural immune modulator. Curr. Pharm. Des. 2009;15:1956–1973. doi: 10.2174/138161209788453202. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Turin C.G., Zea-Vera A., Pezo A., Cruz K., Zegarra J., Bellomo S., Cam L., Llanos R., Castañeda A., Tucto L., et al. Lactoferrin for prevention of neonatal sepsis. Biometals. 2014;27:1007–1016. doi: 10.1007/s10534-014-9754-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Kruzel M.L., Actor J.K., Boldogh I., Zimecki M. Lactoferrin in health and disease. Postepy Hig. Med. Dosw. 2007;61:261–267. [PubMed] [Google Scholar]

75. Kawasaki Y., Sato K., Shinmoto H., Dosako S. Role of basic residues of human lactoferrin in the interaction with B lymphocytes. Biosci. Biotechnol. Biochem. 2000;64:14–18. doi: 10.1271/bbb.64.314.[PubMed] [CrossRef] [Google Scholar]

76. Dhennin-Duthille I., Masson M., Damiens E., Fillebeen C., Spik G., Mazurier J. Lactoferrin upregulates the expression of CD4 antigen through the stimulation of the mitogen- activated protein kinase in the human lymphoblastic T Jurkat cell line. J. Cell. Biochem. 2000;79:583–593. doi: 10.1002/1097-4644(20001215)79:4<583::AID-JCB70>3.0.CO;2-9. [PubMed] [CrossRef] [Google Scholar]

77. Siqueiros-Cendón T., Arévalo-Gallegos S., Iglesias-Figueroa BF., García-Montoya IA., Salazar-Martínez J., Rascón-Cruz Q. Immunomodulatory effects of lactoferrin. Acta Pharmacol. Sin. 2014;35:57–66. doi: 10.1038/aps.2013.200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Legrand D., Elass E., Carpentier M., Mazurier J. Lactoferrin: A modulator of immune and inflammatory responses. Cell. Mol. Life Sci. 2005;62:2549–2559. doi: 10.1007/s00018-005-5370-2.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Hwang S.A., Kruzel M.L., Actor J.K. Lactoferrin augments BCG vaccine efficacy to generate T helper response and subsequent protection against challenge with virulent Mycobacterium tuberculosis. Int. Immunopharmacol. 2005;5:591–599. doi: 10.1016/j.intimp.2004.11.006. [PubMed] [CrossRef] [Google Scholar]

80. Mulder A.M., Connellan P.A., Oliver C.J., Morris C.A., Stevenson L.M. Bovine lactoferrin supplementation supports immune and antioxidant status in healthy human males. Nutr. Res. 2008;28:583–589. doi: 10.1016/j.nutres.2008.05.007. [PubMed] [CrossRef] [Google Scholar]

81. Mayeur S., Spahis S., Pouliot Y., Levy E. Lactoferrin, a Pleiotropic Protein inHealth and Disease. Antioxid. Redox Signal. 2016;24:813–836. doi: 10.1089/ars.2015.6458. [PubMed] [CrossRef] [Google Scholar]

82. Saraiva M., O’Garra A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010;10:70–81. doi: 10.1038/nri2711. [PubMed] [CrossRef] [Google Scholar]

83. Liu K.Y., Comstock S.S., Shunk J.M., Monaco M.H., Donovan S.M. Natural killer cell populations and cytotoxic activity in pigs fed mother’s milk, formula, or formula supplemented with bovine lactoferrin. Pediatr. Res. 2013;74:402–407. doi: 10.1038/pr.2013.125. [PubMed] [CrossRef] [Google Scholar]

84. Cooper C.A., Nelson K.M., Maga E.A., Murray J.D. Consumption of transgenic cows’ milk containing human lactoferrin results in beneficial changes in the gastrointestinal tract and systemic health of young pigs. Transgenic. Res. 2013;22:571–578. doi: 10.1007/s11248-012-9662-7. [PubMed] [CrossRef] [Google Scholar]

85. Yang C., Zhu X., Liu N., Chen Y., Gan H., Troy F.A., Wang B. Lactoferrin up-regulates intestinal gene expression of brain-derived neurotrophic factors BDNF, UCHL1 and alkaline phosphatase activity to alleviate early weaning diarrhea in postnatal piglets. J. Nutr. Biochem. 2014;25:834–842. doi: 10.1016/j.jnutbio.2014.03.015. [PubMed] [CrossRef] [Google Scholar]

86. Wu J., Chen J., Wu W., Shi J., Zhong Y., van Tol E.A.F., Tang Q., Cai W. Enteral supplementation of bovine lactoferrin improves gut barrier function in rats after massive bowel resection. Br. J. Nutr. 2014;112:486–492. doi: 10.1017/S000711451400107X. [PubMed] [CrossRef] [Google Scholar]

87. Arciniega-Martínez I.M., Campos-Rodríguez R., Drago-Serrano M.E., Sánchez-Torres L.E., Cruz-Hernández T.R., Reséndiz-Albor A.A. Modulatory Effects of Oral Bovine Lactoferrin on the IgA Response at Inductor and Effector Sites of Distal Small Intestine from BALB/c Mice. Arch. Immunol. Ther. Exp. (Warsz). 2016;64:57–63. doi: 10.1007/s00005-015-0358-6. [PubMed] [CrossRef] [Google Scholar]

88. Kawashima M., Kawakita T., Inaba T., Okada N., Ito M., Shimmura S., Watanabe M., Shinmura K., Tsubota K. Dietary Lactoferrin Alleviates Age-Related Lacrimal Gland Dysfunction in Mice. PLoS ONE. 2012;7:e33148. doi: 10.1371/journal.pone.0033148. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Kawashima M., Nakamura S., Izuta Y., Inoue S., Tsubota K. Dietary Supplementation with a Combination of Lactoferrin, Fish Oil, and Enterococcus faecium WB2000 for Treating Dry Eye: A Rat Model and Human Clinical Study. Ocul. Surf. 2016;14:255–263. doi: 10.1016/j.jtos.2015.12.005.[PubMed] [CrossRef] [Google Scholar]

90. Cooper C.A., Maga E.A., Murray J.D. Production of human lactoferrin and lysozyme in the milk of transgenic dairy animals: Past, present, and future. Transgenic Res. 2015;24:605–614. doi: 10.1007/s11248-015-9885-5. [PubMed] [CrossRef] [Google Scholar]

91. de Mejia E.G., Dia V.P. The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev. 2010;29:511–528. doi: 10.1007/s10555-010-9241-4.[PubMed] [CrossRef] [Google Scholar]

92. Teng C., Gladwell W., Raphiou I., Liu E. Methylation and expression of the lactoferrin gene in human tissues and cancer cells. Biometals. 2004;17:317–323. doi: 10.1023/B:BIOM.0000027711.13818.8a.[PubMed] [CrossRef] [Google Scholar]

93. Shaheduzzaman S., Vishwanath A., Furusato B., Cullen J., Chen Y., Bañez L., Nau M., Ravindranath L., Kim K.H., Mohammed A., et al. Silencing of Lactotransferrin expression by methylation in prostate cancer progression. Cancer Biol. Ther. 2007;6:1088–1095. doi: 10.4161/cbt.6.7.4327. [PubMed] [CrossRef] [Google Scholar]

94. Wang J., Li Q., Li K., Ou Y., Han Z., Gao D., Li J. Effects of adenovirus vectors mediated human lactoferrin cDNA on mice bearing EMT6 breast carcinoma. Die Pharm. 2011;66:704–709. [PubMed] [Google Scholar]

95. Li W.Y., Li Q.W., Han Z.S., Jiang Z.L., Yang H., Li J., Zhang X.B. Growth suppression effects of recombinant adenovirus expressing human lactoferrin on cervical cancer in vitro and in vivo. Cancer Biother. Radiopharm. 2011;26:477–483. doi: 10.1089/cbr.2010.0937. [PubMed] [CrossRef] [Google Scholar]

96. Freiburgahus C., Janicke B., Lindmark-Mansson H., Oredsson S.M., Paulsson M.A. Lactoferricin treatment decreases the rate of cell proliferation of a human colon cancer cell line. J. Dairy Sci. 2009;92:2477–2484. doi: 10.3168/jds.2008-1851. [PubMed] [CrossRef] [Google Scholar]

97. Lönnerdal B., Jiang R., Du X. Bovine lactoferrin can be taken up by the human intestinal lactoferrin receptor and exert bioactivities. J. Pediatr. Gastroenterol. Nutr. 2011;53:606–614. doi: 10.1097/MPG.0b013e318230a419. [PubMed] [CrossRef] [Google Scholar]

98. Kuhara T., Iigo M., Itoh T., Ushida Y., Sekine K., Terada N., Okamura H., Tsuda H. Orally administered lactoferrin exerts an antimetastatic effect and enhances production of IL-18 in the intestinal epithelium. Nutr. Cancer. 2000;38:192–199. doi: 10.1207/S15327914NC382_8. [PubMed] [CrossRef] [Google Scholar]

99. Iigo M., Shimamura M., Matsuda E., Fujita K., Nomoto H., Satoh J., Kojima S., Alexander D.B., Moore M.A., Tsuda H. Orally Orally administered bovine lactoferrin induces caspase-1 and interleukin-18 in the mouse intestinal mucosa: A possible explanation for inhibition of carcinogenesis and metastasis. Cytokine. 2004;25:36–44. doi: 10.1016/j.cyto.2003.09.009. [PubMed] [CrossRef] [Google Scholar]

100. Pan W.R., Chen P.W., Chen Y.L., Hsu H.C., Lin C.C., Chen W.J. Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage. J. Dairy Sci. 2013;96:7511–7520. doi: 10.3168/jds.2013-7285. [PubMed] [CrossRef] [Google Scholar]

101. Deng M., Zhang W., Tang H., Ye Q., Liao Q., Zhou Y., Wu M., Xiong W., Zheng Y., Guo X., et al. Lactotransferrin acts as a tumor suppressor in nasopharyngeal carcinoma by repressing AKT through multiple mechanisms. Oncogene. 2013;32:4273–4283. doi: 10.1038/onc.2012.434. [PubMed] [CrossRef] [Google Scholar]

102. Letchoumy P.V., Mohan K.V., Stegeman J.J., Gelboin H.V., Hara Y., Nagini S. In vitro antioxidative potential of lactoferrin and black tea polyphenols and protective effects in vivo on carcinogen activation, DNA damage, proliferation, invasion, and angiogenesis during experimental oral carcinogenesis. Oncol. Res. 2008;17:193–203. doi: 10.3727/096504008786111365. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Wolf J. S., Li G., Varadhachary A., Petark K., Schneyer M., Li D., Ongkasuwan J., Zhang X., Taylor R.J., Strome S.E., et al. Oral lactoferrin results in T cell-dependent tumor inhibition of head and neck squamous cell carcinoma in vivo. Clin. Cancer Res. 2007;13:1601–1610. doi: 10.1158/1078-0432.CCR-06-2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Xiao Y., Monitto C.L., Minhas K.M., Sidransky D. Lactoferrin down-regulates G1 cyclin-dependent kinases during growth arrest of head and neck cancer cells. Clin. Cancer Res. 2004;10:8683–8686. doi: 10.1158/1078-0432.CCR-04-0988. [PubMed] [CrossRef] [Google Scholar]

105. Sakai T., Banno Y., Kato Y., Nozawa Y., Kawaguchi M. Pepsin-digested lactoferrin induces apoptotic cell death with JNK/SAPK activation in oral cancer cells. J. Pharm. Sci. 2005;98:41–48. doi: 10.1254/jphs.FPJ04047X. [PubMed] [CrossRef] [Google Scholar]

106. Richardosn A., de Antueno R., Duncan R., Hoskin D.W. Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells. Biochem. Biophys. Res. Commun. 2009;388:736–741. doi: 10.1016/j.bbrc.2009.08.083. [PubMed] [CrossRef] [Google Scholar]

107. Mader J.S., Salsman J., Conrad D.M., Hoskin D.W. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol. Cancer Ther. 2005;4:612–624. doi: 10.1158/1535-7163.MCT-04-0077. [PubMed] [CrossRef] [Google Scholar]

108. Lu Y., Zhang T.F., Shi Y., Zhou H.W., Chen Q., Wei B.Y., Wang X., Yang T.X., Chinn Y.E., Kang J., et al. PFR peptide, one of the antimicrobial peptides identified from the derivatives of lactoferrin, induces necrosis inleukemia cells. Sci. Rep. 2016;6:20823. doi: 10.1038/srep20823. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Lee S.H., Hwang H.M., Pyo C.W., Hahm D.H., Choi S.Y. E2F1-directed activation of Bcl-2 is correlated with lactoferrin-induced apoptosis in Jurkat leukemia T lymphocytes. Biometals. 2010;23:507–514. doi: 10.1007/s10534-010-9341-1. [PubMed] [CrossRef] [Google Scholar]

110. Matsuda Y., Saoo K., Hosokawa K., Yamakawa K., Yokohira M., Zeng Y., Takeuchi H., Imaida K. Post-initiation chemopreventive effects of dietary bovine lactoferrin on 4-(methynitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in female A/J mice. Cancer Lett. 2007;246:41–46. doi: 10.1016/j.canlet.2006.01.034. [PubMed] [CrossRef] [Google Scholar]

111. Son H.J., Lee S.H., Choi S.Y. Human lactoferrin controls the level of retinoblastoma protein and its activity. Biochem. Cell Biol. 2006;84:345–350. doi: 10.1139/o06-048. [PubMed] [CrossRef] [Google Scholar]

112. Wang S., Tu J., Zhou C., Li J., Huang L., Tao L., Zhao L. The effect of Lfcin-B on non-small cell lung cancer H460 cells is mediated by inhibiting VEGF expression and inducing apoptosis. Arch. Pharm. Res. 2015;38:261–271. doi: 10.1007/s12272-014-0373-x. [PubMed] [CrossRef] [Google Scholar]

113. Eliassen L.T., Berge G., Leknessund A., Wikman M., Lindin I., Løkke C., Ponthan F., Johnsen J.I., Sveinbjørnsson B., Kogner P., et al. The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int. J. Cancer. 2006;119:493–500. doi: 10.1002/ijc.21886. [PubMed] [CrossRef] [Google Scholar]

114. Arcella A., Oliva M.A., Staffieri S., Aalberti S., Grillea G., Madonna M., Bartolo M., Pavone L., Giangaspero F., Cantore G., et al. In vitro and in vivo effect of human lactoferrin on glioblastoma growth. J. Neurosurg. 2015;123:1026–1035. doi: 10.3171/2014.12.JNS14512. [PubMed] [CrossRef] [Google Scholar]

115. Hoedt E., Hardivillé S., Mariller C., Elass E., Perraudin J.P., Pierce A. Discrimination and evaluation of lactoferrin and delta-lactoferrin gene expression levels in cancer cells and under inflammatory stimuli using TaqMan real-time PCR. Biometals. 2010;23:441–452. doi: 10.1007/s10534-010-9305-5. [PubMed] [CrossRef] [Google Scholar]

116. Benaïssa M., Peyrat J.P., Hornez L., Mariller C., Mazurier J., Pierce A. Expression and prognostic value of lactoferrin mRNA isoforms in human breast cancer. Int. J. Cancer. 2005;114:299–306. doi: 10.1002/ijc.20728. [PubMed] [CrossRef] [Google Scholar]

117. Kanwar J.R., Palmano K.P., Sun X., Kanwar R.K., Gupta R., Haggarty N., Rowan A., Ram S., Krissansen G.W. ‘Iron-saturated’ lactoferrin is a potent natural adjuvant for augmenting cancer chemotherapy. Immunol. Cell Boil. 2008;86:277–288. doi: 10.1038/sj.icb.7100163. [PubMed] [CrossRef] [Google Scholar]

118. Kanwar J.R., Mahidhara G., Kanwar R.K. Novel alginate-enclosed chitosan-calcium phosphate-loaded iron-saturated bovine lactoferrin nanocar-riers for oral delivery in colon cancer therapy. Nanomedicine. 2012;7:1521–1550. doi: 10.2217/nnm.12.29. [PubMed] [CrossRef] [Google Scholar]

119. Tsuda H., Kozu T., Iinuma G., Ohashi Y., Saito Y., Saito D., Akasu T., Alexander D.B., Futakuchi M., Fukamachi K., et al. Cancer prevention by bovine lactoferrin: From animal studies to human trial. Biometals. 2010;23:399–409. doi: 10.1007/s10534-010-9331-3. [PubMed] [CrossRef] [Google Scholar]

120. Furlong S.J., Mader J.S., Hoskin D.W. Lactoferricin-induced apoptosis in estrogen- nonresponsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen. Oncol. Rep. 2006;15:1385–1390. doi: 10.3892/or.15.5.1385. [PubMed] [CrossRef] [Google Scholar]

121. Massodi I., Thomas E., Raucher D. Application of thermally responsive elastin-like polypeptide fused to a lactoferrin-derived peptide for treatment of pancreatic cancer. Molecules. 2009;14:1999–2015. doi: 10.3390/molecules14061999. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Roseanu A., Florian P.E., Moisei M., Sima L.E., Evans R.W., Trif M. Liposomalization of lactoferrin enhanced its anti-tumoral effects on melanoma cells. Biometals. 2010;23:485–492. doi: 10.1007/s10534-010-9312-6. [PubMed] [CrossRef] [Google Scholar]

123. Artym J., Zimecki M., Kruzel M.L. Effect of lactoferrin on the methotrexate- induced suppression of the cellular and humoral immune response in mice. Anticancer Res. 2004;24:3831–3836. [PubMed] [Google Scholar]

124. Artym J., Zimecki M., Kuryszko J., Kruzel M.L. Lactoferrin accelerates reconstitution of the humoral and cellular immune response during chemotherapy-induced immunosuppression and bone marrow transplant in mice. Stem. Cells Dev. 2005;14:548–555. doi: 10.1089/scd.2005.14.548. [PubMed] [CrossRef] [Google Scholar]

125. Sun X., Jiang R., Przepiorski A., Reddy S., Palmano K.P., Krissansen G.W. “Iron-saturated” bovine lactoferrin improves the chemotherapeutic effects of tamoxifen in the treatment of basal-like breast cancer in mice. BMC Cancer. 2012;12:591. doi: 10.1186/1471-2407-12-591. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Guo H.Y., Jiang L., Ibrahim S.A., Zhang L., Zhang H., Zhang M., Ren F.Z. Orally administered lactoferrin preserves bone mass and microarchitecture in ovariectomized rats. J. Nutr. 2009;139:958–964. doi: 10.3945/jn.108.100586. [PubMed] [CrossRef] [Google Scholar]

127. Bharadwaj S., Naidu A.G., Betageri G.V., Prasadarao N.V., Naidu A.S. Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women. Osteoporos. Int. 2009;20:1603–1611. doi: 10.1007/s00198-009-0839-8. [PubMed] [CrossRef] [Google Scholar]

128. Cornish J., Naot D. Lactoferrin as an effector molecule in the skeleton. Biometals. 2010;23:425–430. doi: 10.1007/s10534-010-9320-6. [PubMed] [CrossRef] [Google Scholar]

129. Georgieff M.K. The role of iron in neurodevelopment: Fetal iron deficiency and the developing hippocampus. Biochem. Soc. Trans. 2008;36:267–271. doi: 10.1042/BST0361267. [PMC free article][PubMed] [CrossRef] [Google Scholar]

130. Somm E., Larvaron P., van de Looij Y., Toulotte A., Chatagner A., Faure M., Métairon S., Mansourian R., Raymond F., Gruetter R., et al. Protective effects of maternal nutritional supplementation with lactoferrin on growth and brain metabolism. Pediatr. Res. 2014;75:51–61. doi: 10.1038/pr.2013.199.[PubMed] [CrossRef] [Google Scholar]

131. Szwajkowska M., Wolanciuk A., Barłowska J., Król J., Litwińczuk Z. Bovine milk proteins as the source of bioactive peptides influencing the consumers’ immune system. Anim. Sci. Pap. Rep. 2011;29:269–280. [Google Scholar]

132. Brouwer C.P., Welling M.M. Various routes of administration of (99m) Tc-labeled synthetic lactoferrin antimicrobial peptide hLF 1–11 enables monitoring and effective killing of multidrug-resistant Staphylococcus aureus infections in mice. Peptides. 2008;29:1109–1117. doi: 10.1016/j.peptides.2008.03.003. [PubMed] [CrossRef] [Google Scholar]

133. Gifford J.L., Hunter H.N., Vogel H.J. Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol. Life Sci. 2005;62:2588–2598. doi: 10.1007/s00018-005-5373-z. [PubMed] [CrossRef] [Google Scholar]

134. Flores-Villaseñor H., Canizalez-Román A., Reyes-Lopez M., Nazmi K., de la Garza M., Zazueta-Beltrán J., León-Sicairos N., Bolscher J.G. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli. Biometals. 2010;23:569–578. doi: 10.1007/s10534-010-9306-4. [PubMed] [CrossRef] [Google Scholar]

135. Wakabayashi H., Bellamy W., Takase M., Tomita M. Inactivation of Listeria monocytogenes by lactoferricin, a potent antimicrobial peptide derived from cow’s milk. J. Food Prot. 1992;55:238–240.[Google Scholar]

136. Dijkshoorn L., Brouwer C.P., Bogaards S.J., Nemec A., van den Broek P.J., Nibbering P.H. The synthetic N-terminal peptide of human lactoferrin, hLF(1–11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2004;48:4919–4921. doi: 10.1128/AAC.48.12.4919-4921.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Federico B., Pinto L., Quintieri L., Carito A., Calabrese N., Caputo L. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp. Int. J. Food Microbiol. 2015;215:179–186. doi: 10.1016/j.ijfoodmicro.2015.09.017. [PubMed] [CrossRef] [Google Scholar]

138. Sánchez-Gómez S., Ferrer-Espada R., Stewart P.S., Pitts B., Lohner K., Martínez de Tejada G. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiol. 2015;15:137. doi: 10.1186/s12866-015-0473-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. León-Calvijo M.A., Leal-Castro A.L., Almanzar-Reina G.A., Rosas-Pérez J.E., García-Castañeda J.E., Rivera-Monroy Z.J. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212. Biomed. Res. Int. 2015;2015:453826. doi: 10.1155/2015/453826. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Tang Z., Zhang Y., Stewart A.F., Geng M., Tang X., Tu Q., Yin Y. High-level expression, purification and antibacterial activity of bovine lactoferricin and lactoferrampin in Photorhabdus luminescens. Protein Expr. Purif. 2010;73:132–139. doi: 10.1016/j.pep.2010.05.013. [PubMed] [CrossRef] [Google Scholar]

141. Cruz J., Ortiz C., Guzmán F., Cárdenas C., Fernandez-Lafuente R., Torres R. Design and activity of novel lactoferrampin analogues against O157:H7 enterohemorrhagic Escherichia coli. Biopolymers. 2014;101:319–328. doi: 10.1002/bip.22360. [PubMed] [CrossRef] [Google Scholar]

142. van der Kraan M.I., Nazmi K., van ’t Hof W., Amerongen A.V., Veerman E.C., Bolscher J.G. Distinct bactericidal activities of bovine lactoferrin peptides LFampin 268–284 and LFampin 265–284: Asp-Leu-Ile makes a difference. Biochem. Cell. Biol. 2006;84:358–362. doi: 10.1139/o06-042. [PubMed] [CrossRef] [Google Scholar]

143. Wang W.Y., Wong J.H., Ip D.T., Wan D.C., Cheung R.C., Ng T.B. Bovine Lactoferrampin, Human Lactoferricin, and Lactoferrin 1–11 Inhibit Nuclear Translocation of HIV Integrase. Appl. Biochem. Biotechnol. 2016;179:1202–1212. doi: 10.1007/s12010-016-2059-y. [PubMed] [CrossRef] [Google Scholar]

144. Ng T.B., Cheung R.C., Wong J.H., Wang Y., Ip D.T., Wan D.C., Xia J. Antiviral activities of whey proteins. Appl. Microbiol. Biotechnol. 2015;99:6997–7008. doi: 10.1007/s00253-015-6818-4.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Tsou Y.A., Huang H.J., Lin W.W., Chen C.Y. Investigation of anti-infection mechanism of lactoferricin and splunc-1. Evid. Based Complement. Alternat. Med. 2014;2014:907028. doi: 10.1155/2014/907028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Jenssen H., Sandvik K., Andersen J.H., Hancock R.E., Gutteberg T.J. Inhibition of HSV cell-to-cell spread by lactoferrin and lactoferricin. Antivir. Res. 2008;79:192–198. doi: 10.1016/j.antiviral.2008.03.004. [PubMed] [CrossRef] [Google Scholar]

147. Mistry N., Drobni P., Näslund J., Sunkari V.G., Jenssen H., Evander M. The anti-papillomavirus activity of human and bovine lactoferricin. Antivir. Res. 2007;75:258–265. doi: 10.1016/j.antiviral.2007.03.012. [PubMed] [CrossRef] [Google Scholar]

148. Lupetti A., Brouwer C.P., Bogaards S.J., Welling M.M., de Heer E., Campa M., van Dissel J.T., Friesen R.H., Nibbering P.H. Human lactoferrin-derived peptide’s antifungal activities against disseminated Candida albicans infection. J. Infect. Dis. 2007;196:1416–1424. doi: 10.1086/522427.[PubMed] [CrossRef] [Google Scholar]

149. Sengupta J., Saha S., Khetan A., Sarkar S.K., Mandal S.M. Effects of lactoferricin Bagainst keratitis-associated fungal biofilms. J. Infect. Chemother. 2012;18:698–703. doi: 10.1007/s10156-012-0398-3.[PubMed] [CrossRef] [Google Scholar]

150. Vylkova S., Sun J.N., Edgerton M. The role of released ATP in killing Candida albicans and other extracellular microbial pathogens by cationic peptides. Purinergic Signal. 2007;3:91–97. doi: 10.1007/s11302-006-9040-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Tang X.S., Shao H., Li T.J., Tang Z.R., Huang R.L., Wang S.P., Kong X.F., Wu X., Yin Y.L. Dietary supplementation with bovine lactoferrampin-lactoferricin produced by Pichia pastoris fed-batch fermentation affects intestinal microflora in weaned piglets. Appl. Biochem. Biotechnol. 2012;168:887–898. doi: 10.1007/s12010-012-9827-0. [PubMed] [CrossRef] [Google Scholar]

152. Haney E.F., Nazmi K., Lau F., Bolscher J.G., Vogel H.J. Novel lactoferrampin antimicrobial peptides derived from human lactoferrin. Biochimie. 2009;91:141–154. doi: 10.1016/j.biochi.2008.04.013.[PubMed] [CrossRef] [Google Scholar]

153. Leitch G.J., Ceballos C. A role for antimicrobial peptides in intestinal microsporidiosis. Parasitology. 2009;136:175–181. doi: 10.1017/S0031182008005313. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. López-Soto F., León-Sicairos N., Nazmi K., Bolscher J.G., de la Garza M. Microbicidal effect of the lactoferrin peptides lactoferricin17–30, lactoferrampin265–284, and lactoferrin chimera on the parasite Entamoeba histolytica. Biometals. 2010;23:563–568. doi: 10.1007/s10534-010-9295-3. [PubMed] [CrossRef] [Google Scholar]

155. Eliassen L.T., Berge G., Sveinbjørnsson B., Svendsen J.S., Vorland L.H., Rekdal Ø. Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res. 2002;22:2703–2710.[PubMed] [Google Scholar]

156. Chen H.Y., Mollstedt O., Tsai M.H., Kreider R.B. Potential clinical applications of multi-functional milk proteins and peptides in cancer management. Curr. Med. Chem. 2014;21:2424–2437. doi: 10.2174/0929867321666140205135739. [PubMed] [CrossRef] [Google Scholar]

157. Yin C.M., Wong J.H., Xia J., Ng T.B. Studies on anticancer activities of lactoferrin and lactoferricin. Curr. Protein Pept. Sci. 2013;14:492–503. doi: 10.2174/13892037113149990066. [PubMed] [CrossRef] [Google Scholar]

158. Zheng Y., Chen P., Guo X., Ma J., Li G. New function of lactoferrin: Protection against cancer development and metastasis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2012;37:1284–1289. [PubMed] [Google Scholar]